TEMA 10 INTRODUCCIÓN A LOS SISTEMAS OPERATIVOS DISTRIBUIDOS

- Introducción
- Hardware
- Software
- Aspectos de diseño

Introducción

- Aparecen en los 80
- Desarrollo de
 - Microprocesadores
 - LAN

Sistemas Distribuidos: Gran nº de procesadores conectados mediante una red.

Sistemas Centralizados: Una única CPU.

Ventajas de un sistema distribuido sobre un sistema centralizado

- Económicas
 - Mejor relación precio/rendimiento
- Velocidad
 - 1000 CPUs x 20 MIPS = 20000 MIPS
- Aplicaciones distribuidas
 - Sistema distribuido industrial
 - Sistema distribuido comercial
- Fiabilidad
- Crecimiento incremental

Ventajas de un sistema distribuido sobre máquinas independientes

- Compartir datos
- Compartir dispositivos
- comunicación
- Flexibilidad

Desventajas

- Software
- Redes de comunicación
- Seguridad

Hardware I

- Clasificación de Flynn:
 - SISD
 - · Varias unidades funcionales
 - Procesamiento en línea
 - SIMD
 - Máquinas vectoriales
 - Procesadores de arreglos
 - MIMD
 - Multiprocesadores: Memoria compartida
 - Multicomputadores: Memoria privada

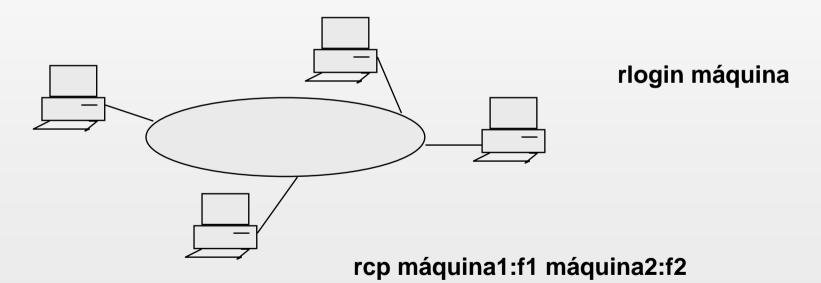
Hardware II

- El nº de bits por segundo que se puede transferir / retardo
 - Sistemas fuertemente acoplados
 - Sistemas débilmente acoplados

SISTEMAS PARALELOS

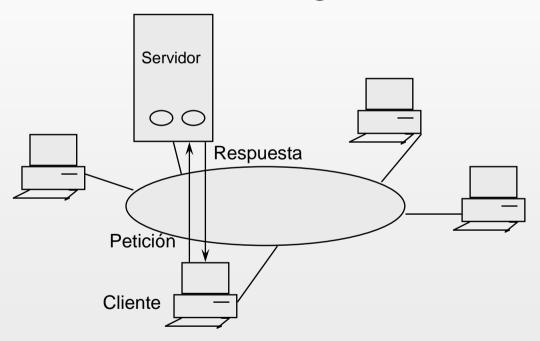
SISTEMAS DISTRIBUIDOS

MULTIPROCESADORES

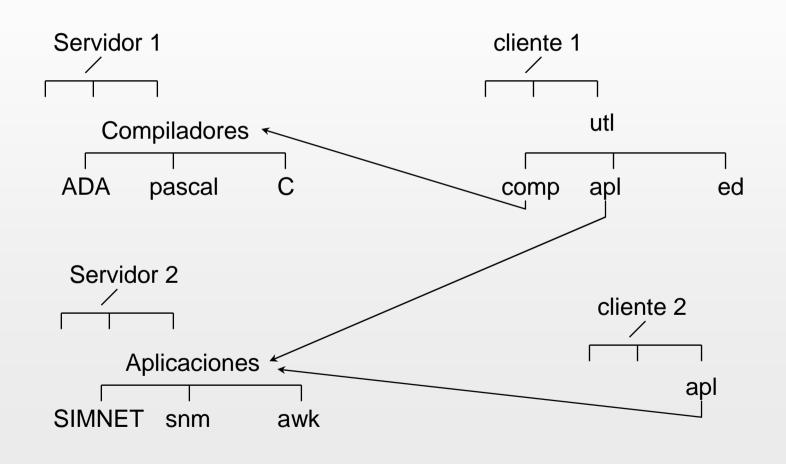

MULTICOMPUTADORES

Software

- Sistema operativo de red y sistema de ficheros de red
- Sistemas de tiempo compartido multiprocesador
- Sistemas operativos distribuidos


Sistema operativo de red y sistema de ficheros de red

- Hardware débilmente acoplado
- Software que permite cierta independencia

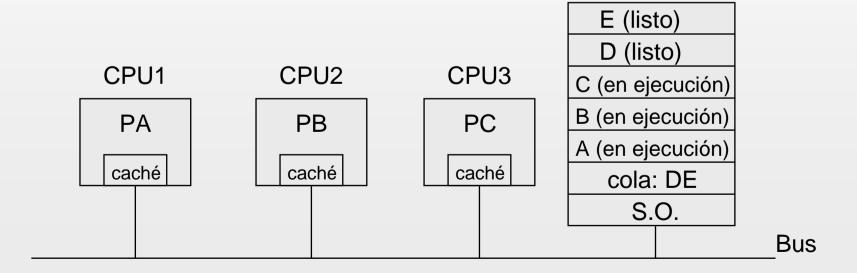


Sistema de ficheros de red: Servidor de ficheros

Sistema de ficheros global

Servidor de ficheros: Estructura jerárquica

Sistema operativo de red


- Gestiona
 - Estación de trabajo individual
 - Servidores de ficheros
 - Comunicación
- Sistema de ficheros de red de Sun Microsystem: NFS

Sistema de tiempo compartido multiprocesador

- Hardware fuertemente acoplado
- Muestra el sistema como una única CPU más rápida
- Ejemplo: Sistema de tiempo compartido UNIX con múltiples CPUs

Cola de procesos

- Una única cola de procesos listos para ejecución para todas las CPUs
- Se mantiene en la memoria compartida

Sistema de ficheros

- Único bloque de memoria caché para todas las CPUs
- Para leer o escribir, se tiene que obtener exclusión mutua para poder acceder a ella

Multiprocesamiento

- Asimétrico
 - Una CPU dedicada a ejecutar el Sistema Operativo
 - Suele convertirse en un cuello de botella
- Simétrico
 - Todas las CPUs funcionan de una forma similar

Sistemas Operativos Distribuidos

- En sistemas multicomputadores
- Los usuarios
 - Ven el sistema como un ordenador simple
 - No son conscientes de que haya múltiples CPUs
- Ningún sistema cumple aún este requerimiento

Características

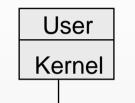
- Mecanismo global para la comunicación entre procesos
- Esquema de protección global
- Gestión de procesos común
- Sistema de ficheros global
- Cada kernel debe tener el control de los recursos locales
 - Gestión de su propia memoria
 - Gestión de procesos -> Planificación

Aspectos de diseño de S.O.D.

- Transparencia
- Flexibilidad
- Fiabilidad
- Rendimiento
- Escalabilidad

Transparencia

- Sistema transparente: da la imagen a cada uno de los usuarios de ser un sistema con un único procesador de tiempo compartido
- Dos niveles
 - A nivel de usuario
 - A nivel de programa


Distintos aspectos de la transparencia

Transparencia

- de localización: mismo acceso a recursos locales y remotos
- de migración: se pueden mover recursos sin que por ello cambie su nombre
- de copia: el sistema puede hacer las copias oportunas sin avisar a los usuarios
- de concurrencia: gestión de accesos concurrentes
- de paralelismo: ejecución en paralelo

Flexibilidad

Formas de estructurar el sistema

- Kernel monolítico
 - S.O tradicional aumentado con facilidades para red y servicios remotos.

MicroKernel

- Kernel pequeño y servidores en el nivel de usuario que proporcionan los servicios del S.O
- Más flexible
- IPC, gestión de memoria, gestión de procesos y planificación, E/S a bajo nivel
- No proporciona SF ni directorios, ni gestión de procesos completa

Ventajas

Del microkernel

- Interfaz entre clientes y servidores bien definida
- Servidor disponible por cualquier cliente
- Es fácil implementar, instalar y depurar nuevos servicios

Del Kernel monolítico

• Rendimiento, ya que los servicios son locales

Fiabilidad I

- Aspectos
 - Disponibilidad
 - Porción de tiempo que el sistema está disponible
 - Diseño del sistema que no necesite el funcionamiento de un gran número de componentes críticos
 - Redundancia
 - Coherencia de datos
 - La redundancia de datos no debe llegar a ser inconsistente

Fiabilidad II

- Más aspectos
 - Seguridad
 - Recursos protegidos de uso no autorizado
 - Tolerancia a fallos
 - Si el servidor cae, la recuperación debe ser fácil

Se debe ocultar al usuario los fallos del sistema, pero no se debe sobrecargar el sistema cuando funciona correctamente

Rendimiento

- El problema del rendimiento se ve afectado por las comunicaciones
- Para optimizar el rendimiento
 - minimizar el número de mensajes
 - aprovechar la posibilidad de ejecutar varias partes de un proceso en paralelo
 - Paralelismo de grano fino
 - Paralelismo de grano grueso
- La tolerancia a fallos también influye

Escalabilidad

- El sistema debe estar diseñado para que al ampliarlo no falle
- Hay que evitar
 - Componentes centralizados
 - Tablas centralizadas
 - Algoritmos centralizados
- Algoritmos descentralizados
 - No se tiene información completa del estado del sistema
 - Decisiones basadas en información local disponible
 - Si una máquina falla, el algoritmo sigue funcionando
 - No se asume que hay un reloj global