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There are, in fact, some ambiguities in this choice for applications that want 
only a lightweight reliable service. For example, an application might want 
notification of lost messages but not actually care enough to have a transport 
protocol attempt to redeliver the missing data. For such applications the choice 
is between using TCP and attempting to reduce the overhead by using as few 
options as possible (perhaps controlling the behavior of the local TCP imple- 
mentation through runtime parameters at the sockets API), and using UDP with 
additional application-level protocol exchanges to provide the level of service 
that is required. 

In the end, the fact that TCP is implemented and readily available on most 
platforms usually counts for a lot, and the savings in protocol design and 
application implementation usually means that TCP is chosen whenever there 
is any doubt. 

7.3.11 Protocols That Use TCP 
Many application protocols associated with bulk transfer of data use TCP. These 
include the File Transfer Protocol (FTP), the Hypertext Transfer Protocol (HTTP), 
and email protocols such as the Simple Mail Transfer Protocol (SMTP) and the 
Post Office Protocol (POP3). 

Telnet is an interesting example of a protocol that commonly transfers small 
amounts of data but still uses TCP. The command-response nature of Telnet 
and its immediate visibility to a human user is such that it is essential to ensure 
that messages are delivered correctly. 

TCP is also used by control and routing protocols to transport their data. 
The Border Gateway Protocol (BGP-4) and the Label Distribution Protocol 
(LDP) are good examples. The use of TCP makes sense for them because they 
establish clear and long-lived associations with "adjacent" nodes over which 
they need to keep exchanging information. Using TCP means that these protocols 
do not need to include methods to track the data that is exchanged--they are 
heavily dependent on the reliability of TCP. On the other hand, many control and 
routing protocols that use TCP need to include their own keep-alive mechanisms 
to ensure that the TCP connection is still active and to detect connection failures 
in a timely manner. 

7,4 Stream Control Transmission Protocol (SCTP) 

TCP is a well-established, proven transport protocol that is used by a substantial 
number of application protocols. So why invent another transport protocol? As 
can be seen by the number of RFCs that apply to TCP, it has been necessary to 
make small tweaks to the protocol over the years as the Internet has evolved and 
as the requirements on a transport protocol have become clearer. A new class 
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of control protocols has recently started to be used within the Internet to signal 
Packet Switched Telephone Network (PSTN) connections, and these protocols 
place a high level of requirements on their transport service provider. Rather than 
developing still more modifications to TCP, the opportunity was taken to invent 
a new transport protocol, the Stream Control Transmission Protocol (SCTP). 
SCTP is defined in RFC 2960. 

Although SCTP was designed specifically to meet the transport requirements 
of PSTN signaling messages over IP networks, it is available as a transport 
protocol for any application or control protocol. The main features of SCTP are 
as follows. Many of these will be familiar to those who understand the services 
provided by TCP. 

�9 SCTP is a reliable connection-oriented transport protocol. 
�9 It operates over a connectionless network protocol such as IP. 
�9 It provides acknowledged, error-flee, nonduplicated transfer of user data. 
�9 It can be supplied and can deliver data in large blocks. 
�9 It fragments data to fit within the MTU size. 
�9 It includes sender pacing and congestion avoidance schemes. 

In addition, SCTP provides some new, unique features. SCTP facilitates the 
establishment and maintenance of multiple s t reams  between the same pair of 
end points. This is equivalent to having multiple conversations between two 
people at the same time on the same phone call, but actually allows for an extra 
level of hierarchy in the address scheme. To revert to the postal analogy, this is 
like having a whole family served by a single mailbox with different mail 
exchanges (streams) going on to different family members. Messages within the 
SCTP connection may be delivered in strict order of arrival across all streams or 
may be separated into individual streams for delivery--in either case, SCTP 
ensures in-order delivery within each stream. 

Some moderate performance enhancements are included to allow multiple 
SCTP messages to be bundled into a single SCTP packet for transmission. This 
reduces the network overhead of the IP header for small SCTP messages and, 
more importantly, reduces the processing overhead associated with sending and 
receiving each SCTP packet. 

SCTP also includes some improved network-level fault tolerance through 
the concept of multihoming. At either or both ends of an SCTP association 
multiple addresses may be used so that the association can be dynamically moved 
from one point of attachment to another. This allows distinct routes to be engi- 
neered through the network for the different addresses and allows the SCTP 
association to be redirected around network outages without the need to tear it 
down and reestablish it. Figure 7.18 shows how an SCTP association is formed 
to support multiple streams across an IP network using multihoming. 

Finally, SCTP also includes some additional security features to provide 
resistance to flooding and masquerade attacks. 
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Figure 7.18 An SCTP Association carries multiple streams between a pair of ports on end points that 
may be identified by multiple IP addresses. 

7.4.1 SCTP Message Formats 

SCTP communicates end-to-end using SCTP packets that are sent within IP 
datagrams using the protocol identifier value of 132. Each SCTP packet contains 
a single SCTP header and one or more SCTP chunks. The SCTP header identifies 
the SCTP association and contains security and verification details. Each chunk 
may be a control message applicable to the association or one of the streams that 
run through it, or may be data being exchanged on one of the streams. Figure 7.19 
shows how an SCTP packet is constructed. 

Just as in UDP and TCP, the primary identifiers in the SCTP header (shown 
in Figure 7.20) are the source and destination port numbers.  Port numbers for 
SCTP are managed from the same space as they are for the other IP transport 
protocols and are administered by IANA. This means that an application can be 
run over any transport protocol without needing to change its port number.  The 
header also includes a Verification Tag assigned during association establishment. 
The sender of an SCTP packet inserts the receiver's tag as a form of protection 

SCTP Packet 

SCTP 
Header 

SCTP 
Chunk 

SCTP 
Chunk 

SCTP 
Chunk 

Figure 7.19 An SCTP packet contains a single header and one or more SCTP chunks. 
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Figure 7.20 The SCTP message header. 
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Figure 7.21 SCTP chunks have a common format. 

against old SCTP packets being delivered very late and also to help protect the 
association from security attacks. 

The final field in the SCTP header is a 32-bit checksum field. Unlike TCP 
and UDP, SCTP does not use the standard IP checksum, but instead uses the 
Adler 32-bit checksum. This checksum is somewhat of an improvement over 
the 16-bit Fletcher checksum (see Section 5.6.2), allowing fewer corruptions to 
be missed. Note that SCTP does not use a pseudoheader since the inclusion of 
the verification tag provides some protection against misdelivery, but also 
because the multihoming nature of SCTP means that it would not be so simple 
to pick the correct IP addresses to use in the pseudoheader. The Adler 32-bit 
checksum is described in RFC 1950. 

Note that the SCTP header does not include a length field. The length of the 
whole packet can be deduced from the size of the reassembled IP fragments. 

Each SCTP chunk has a common format, as shown in Figure 7.21. It begins 
with a type identifier to indicate how the chunk should be interpreted, a set of 
flags that have distinct meanings according to the chunk type, and a length 
indicator that shows the length of the entire chunk, including the type, flags, 
and length fields. Each chunk must start on a 4-byte boundary, so it may be 
necessary to insert padding between chunks, but the chunk length still reflects 
the actual length of a chunk without the padding. 

After this chunk common header, the contents of the chunk are interpreted 
according to the chunk type. Most chunk data are built up from a type-dependent 
header followed by a sequence of chunk parameters. Each chunk parameter is 
encoded as a type-length-variable (TLV) with 2 bytes assigned to the type and 
2 bytes to the length, which is calculated to include the type and length fields. 
As with chunks, the chunk parameters must start on 4-byte boundaries, and 
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Table 7.2 The SCTP Chunk Types 

Chunk Type Chunk Usage 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 to 255 

Payload Data 

Association Initiation 

Initiation Acknowledgement 

Selective Acknowledgement 

Heartbeat Request 

Heartbeat Acknowledgement 

Abort 

Shutdown Request 

Shutdown Acknowledgement 

Operation Error Notification 

State Cookie Echo 

State Cookie Echo Acknowledgement 

Explicit Congestion Notification Echo 

Congestion Window Reduced 

Shutdown Complete 

Reserved by IETF 

so padding may need to be inserted between chunk parametersmthis padding is 
not included in the parameter length. 

Note that chunks within a single SCTP packet all apply to the same associa- 
tion, but may refer to different streams. It is important that some sense of order 
be preserved when processing chunks from the same packetmany chunk that 
applies to the whole association must be processed in order, and chunks for an 
individual stream must also be kept in sequence. 

Table 7.2 lists the defined SCTP chunk types. Note that each chunk is effec- 
tively a control message in its own right. 

7.4.2 Association Establishment and Management 

Figure 7.22 shows some sample chunk exchanges in the life of an SCTP associ- 
ation. In SCTP the end points are perceived as peers rather than as client and 
server. This is a semantic nicety that allows applications to have less of a 
master-slave relationship, but does not alter the fact that one end must initiate 
the association. 
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Figure 7.22 SCTP chunk exchanges during the life of an association. 

Association establishment is initiated when one SCTP peer sends a packet 
containing an Association Initiation chunk, shown in Figure 7.23. This chunk 
carries several common fields to negotiate the terms of the association and a 
series of optional parameters encoded as chunk parameters. The common fields 
are listed in Table 7.3. The optional parameters carried in an Association Initiation 
chunk are listed in Table 7.4. 

The remote end point responds to an Association Initiation chunk with an 
Initiation Acknowledgement chunk, shown in Figure 7.24. This chunk accepts 
the association and supplies the negotiated values and reverse direction para- 
meters for management of the association. The same common fields are present 



7.4 Stream Control Transmission Protocol (SCTP) 343 

Table 7.3 Common Fields in an SCTP Association Initiation Chunk 

Association Initiation Chunk Field Use 

Initiate Tag 

Advertised Receiver Window 
Credit 

Number of Outbound Streams 

Number of Inbound Streams 

Initial Transmission Sequence 
Number (TSN) 

This 32-bit tag is exchanged during association initialization and is 
placed on every message that applies to the session. It is used to help 
prevent security breaches and to validate that individual packets apply 
to this instance of the association. The tag must not have value zero. 

The initial size of the receiver window--that is, the number of bytes 
that the sender may send. This value may be modified by Selective 
Acknowledgement chunks. 

Defines the maximum number of outbound streams the sender of this 
chunk wants to create in this association. A value of zero must not be 
used. 

Defines the maximum number of inbound streams the sender of this 
chunk is willing to allow the receiver to create in this association. 
A value of zero must not be used. 

The initial TSN is the sequence number that identifies the first byte of 
data that will be sent on the association. Any number in the range 
0 to 4,294,967,295 is acceptable. Some implementations randomize 
this value and set it to the value of the Initiate Tag field. 

Table 7.4 Optional Parameters in an SCTP Association Initiation Chunk 

Parameter Type Parameter Name Use 

5 IPv4 Address 

6 IPv6 Address 

9 Cookie 
Preservative 

11 

12 

Host Name 
Address 

Supported 
Address Types 

One of the IPv4 addresses that may be used to identify the sender's 
end of the association. Multiple IPv4 and IPv6 addresses may be 
present. If no addresses are present, the SCTP application should use 
the address from the IP datagram that delivered the SCTP packet. 

One of the IPv6 addresses that may be used to identify the sender's 
end of the association. Multiple IPv4 and IPv6 addresses may be 
present. If no addresses are present, the SCTP application should use 
the address from the IP datagram that delivered the SCTP packet. 

A value in milliseconds by which the sender is suggesting that the 
cookie timeout value be increased to prevent the cookie expiring 
again (as it has just done) during association establishment. 

A single host name that may be used to identify the sender's end of 
the association. The host name may not be present along with any 
IPv4 or IPv6 addresses, and only one host name may be used. 

The address types that the sender supports and from which the 
receiver may choose addresses for its end of the association. If this 
parameter is absent, the sender supports all address types. 
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Suggested Cookie Life Span Increment (milliseconds) 

Optional Parameter Type = 12 
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Address Type 4 
(IPv4) 

Address Type 11 
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Address Type 5 
(IPv6) 

Padding 

Fioure 7.23 The SCTP Association Initiation chunk. 

that were used on the Association Initiation chunk. Some of the same optional 
parameters may also be present: the IPv4 Address, IPv6 Address, and Host 
Name Address parameters may all be included. Additionally, the Initiation 
Acknowledgement chunk must include the State Cookie parameter (type 7). 
The State Cookie is used to authenticate and correlate the Initiation Acknowl- 
edgement chunk with the third stage of the four-way association establishment 
handshake, the State Cookie Echo chunk. The State Cookie contains all of the 
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Figure 7.24 The SCTP Initiation Acknowledgement chunk. 

information the responder needs to coordinate between the SCTP chunks, and 
additionally includes a Message Authentication Code (MAC) to provide add- 
itional security. When a responder builds a State Cookie and sends it in an Initi- 
ation Acknowledgement chunk, it starts a timer to protect itself from leaving 
around half-open associations. The State Cookie may, therefore, timeout during 
association establishment. If the sender detects this, it can try to reestablish the 
association and may present a Cookie Preservative parameter to suggest an 
amount by which the receiver should increment its timer so that the association 
will be correctly established. 

The Initiation Acknowledgement chunk may also contain an Unrecognized 
Parameter (type 8), which allows the responder to return any parameters that 
were seen on the Association Initiation chunk that it does not support. Note 
that the Association Initiation and the Initiation Acknowledgement chunks may 
be quite large because of the presence of a potentially large number of 
addresses and the size of a State Cookie. 

If the initiator is happy with the parameters on the Initiation Acknowledge- 
ment chunk, it echoes the responder's State Cookie back to it using a State 
Cookie Echo chunk, which contains just the cookie as received on the Initiation 
Acknowledgement chunk. As a final handshake, the responder acknowledges 
the State Cookie Echo chunk with a State Cookie Echo Acknowledgement chunk 
that contains no data or parameters. At this point the association is up and ready 
to carry data in both directions. 
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Figure 7.25 The SCTP Heartbeat and Heartbeat Acknowledgement chunks. 

Once an association is open, the SCTP implementation may probe it period- 
ically to check that it is still established and active. It does this using the 
Heartbeat and Heartbeat Acknowledgement chunks shown in Figure 7.25. The 
Heartbeat chunk contains Sender Heartbeat Information, which is in any format 
that the sender may choose and is transparent to every node apart from the 
sender. The information would normally include a timestamp in local format and 
probably the source and destination addresses used for the SCTP packet that 
contains the chunk. When a receiver gets a Heartbeat chunk it turns it around 
as a Heartbeat Acknowledgement chunk and copies the sender information 
back to the sender. A receiver should send the SCTP packet that contains the 
Heartbeat Acknowledgement as soon as it can and should not wait for the 
packet to be filled with other chunks. 

An active association can carry data for any of the streams that thread it. 
The process of data transfer is described further in Section 7.4.3. 

Orderly association closure requires a three-way handshake in SCTP. The 
Shutdown Request chunk is used to begin the process. It contains the sequence 
number of the last received contiguous byte of data on the association. Note that 
although acknowledgement of noncontiguous data is allowed (see Section 7.4.3), 
this facility is not available on association shutdown. Either end point may initi- 
ate shutdown and, just as in TCP, the shutdown may be staggered, with the end 
that begins the shutdown sending no further data but the other end able to con- 
tinue to send. Eventually, when the remote end has finished sending data, it 
responds with a Shutdown Acknowledgement chunk and the end that started 
the shutdown confirms this step with a Shutdown Complete chunk. At this 
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Figure 7.26 The Shutdown Request, Shutdown Acknowledgement, and Shutdown Complete chunks 
used in graceful association termination in SCTP. 

point the association is closed. Figure 7.26 shows the three chunks used in the 
shutdown sequence. 

There is one flag on the Shutdown Complete chunk. The T-flag is used 
(set to zero) to indicate that the sender of the message found and destroyed a 
Transmission Control Block (TCB) associated with this association--in other 
words, that this was a normal shutdown and that state matching the received 
Shutdown Acknowledgement chunk was found. If the state couldn't  be found, 
the Shutdown Complete chunk should still be sent to help the far end of the 
(nonexistent) association to clean up- - in  this case the T-flag should be set 
to 1. 

Two other important SCTP chunks exist. The Abort chunk is used to 
preemptively abort an association if any error is detected during establishment 
or even during normal processing. The Abort chunk may contain one or more 
Cause parameters giving the reason for the chunk and passing associated data. 
In the same way, a nonfatal error observed during the life of an association can 
be reported using Cause parameters on an Operation error chunk. Note that an 
SCTP peer that receives what it considers to be a badly encoded Abort or Oper- 
ation Error chunk must silently discard the chunk and must not respond with its 
own Abort or Operation Error chunk since to do so risks a tight loop of message 
exchanges. 

Table 7.5 lists the cause codes defined for Cause parameters carried in Abort 
or Operation Error chunks. Along with each cause code is listed the additional 
information passed in the Cause parameter. 

Figure 7.27 shows the Abort and Operation Error chunks with their payloads 
of Cause Parameters. The Abort chunk carries the T-flag with the same meaning 
as on the Shutdown Complete chunk. 
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Table 7.5 SCTP Cause Codes and Additional Information 
IIIII 

Cause Meaning Additional Information 

1 Invalid Stream Identifier 

2 Missing Mandatory 
Parameter 

3 Stale Cookie Error 

4 Out of Resource 

5 Unresolvable Address 

Unrecognized Chunk 
Type 

7 Invalid Mandatory 
Parameter 

8 Unrecognized 
Parameters 

10 

9 No User Data 

Cookie Received 
While Shutting Down 

The value of the invalid stream identifier was received in a data chunk. 

This is a count of missing mandatory parameters and the parameter 
type number of each missing parameter. 

A cookie has been received in a State Cookie Echo chunk but the cookie 
has expired by the number of microseconds indicated. Note that this 
value is in microseconds even though the Suggested Cookie Life Span 
Increment given by the Cookie Preservative chunk is in milliseconds. 

No data is passed when this error is reported. 

The complete unresolvable address is passed encoded as an SCTP 
parameter so that its type and length can be seen. 

This error returns the chunk type, flags, and length of the unrecognized 
chunk. 

This error is returned when one of the mandatory parameters on an 
Association Initiate or Initiate Acknowledgement chunk is set to an 
invalid value. No data is returned with this error, so it is not possible 
for the sender to determine which parameter is at fault. 

This error returns the full SCTP parameter that is unrecognized. 

A data chunk (see below) was received with a valid TSN but no data 
was present. This error returns the TSN that was received. 

No data is passed when this error is reported. 

7.4.3 Data Transfer 
Data transfer in SCTP is managed, as in TCP, as a single sequenced and numbered 
flow of bytes on the association. That is, each data chunk contains a Transmission 
Sequence Number  (TSN) that identifies the first byte in the context of the asso- 
ciation. The amount of data is indicated by subtracting the Data chunk parameters 
from the Data chunk length. 

One of the most important features of SCTP is that it can multiplex more than 
one data stream onto the same association. It does this by identifying the data 
stream to which the data applies through a 16-bit field in the Data chunk 
parameters,  as shown in Figure 7.28. Additionally, a stream sequence number  
encodes a message number  from the sending application so that the data chunks 
can be reassembled by the receiving application. Finally, a payload protocol 
identifier is included to help applications that multiplex data from several protocols 
through the same association. 
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Fioure 7.27 The SCTP Abort and Operation Error chunks. 
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Fioure 7.28 The SCTP Data chunk. 
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Data delivery in SCTP is closely tied to the concept of user data messages. 
That is, the application delivers data to the SCTP service in discrete lumps (of 
arbitrary size) and these are transferred by SCTP (which may need to segment 
them to send them), reassembled, and delivered whole to the application at the 
remote end. User data messages are given sequence numbers by the application 
within the context of the stream on which they flow, and SCTP undertakes not 
only to reassemble the data chunks so that the right data is placed in the right 
message, but also to deliver the messages in order. 

Three SCTP Chunk Flags are used on the Data chunk to help manage this. 
The B-flag indicates that the data chunk comes from the beginning of a user 
message. The E-flag indicates that this is the end of a user data message. The 
B- and E-flags may both be set on a data chunk if the chunk represents the entirety 
of the user data message. The third flag, the U-flag, indicates that the chunk 
contains all or part of an unordered data message. Unordered messages do not 
have valid Stream Sequence Numbers and should be delivered on the stream as 
soon as they have been reassembled--this makes them behave a little like the 
receive side of urgent data in TCP. 

Figure 7.29 shows how data may be multiplexed from two streams onto 
a single SCTP association and then demultiplexed for delivery. Note that for 
simplicity in this example, no acknowledgments of the data are shown. Also for 

Figure 7.29 Multiplexing and demultiplexing of user data streams on a single SCTP association. 
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simplicity the SCTP packets shown in Figure 7.29 carry just one Data chunk 
each--there is no reason, except perhaps for the maximum size of the MTU, for 
a single packet not to carry multiple Data chunks. If a packet carries more than 
one Data chunk, each is encoded just as it would be if it were the only chunk in 
the packet. In particular, the TSN of one chunk follows on from the last byte of 
the previous chunk. 

Acknowledgements in SCTP utilize the understanding of selective acknowl- 
edgment gained over the years using TCP. A Selective Acknowledgement chunk in 
SCTP acknowledges up to a specific TSN (the Cumulative TSN Acknowl- 
edgement), indicating that all bytes up to and including that TSN have been 
successfully received. Note that this is different from TCP, in which the 
Acknowledgement Number indicates the next expected Sequence Number. It is 
not necessary to issue multiple Selective Acknowledgement chunks for each 
stream; a single Selective Acknowledgement chunk can serve the needs of the 
whole association. 

At the same time, the Selective Acknowledgement chunk can indicate blocks 
of data after the Cumulative TSN Acknowledgement value that have been received, 
and can acknowledge them selectively. It does this using the perversely named 
gap acknowledgement blocks, which indicate the start and end offsets from 
the Cumulative TSN Acknowledgement value of each block of received--not 
missing--data. Consider the sequence of bytes shown in Figure 7.30. All bytes 
on a shaded background have been successfully received, but those not shaded 
are missing. In this case, the Selective Acknowledgement chunk should report a 
Cumulative TSN Acknowledgement of 37 with two gap acknowledgement 
blocks: {4, 11} and { 15, 20}. 

The Selective Acknowledgement chunk shown in Figure 7.31 contains the 
Cumulative TSN as described in the preceding paragraph. It also sets the 
receiver window just as in TCP, but learning from the lessons of window scaling 
in TCP, the Receiver Window is a full 32 bits so that scaling is not needed. The 
next portion of the chunk is used to indicate gap acknowledgement blocks and is 
preceded by a count of blocks--an implementation that does not support selective 

Figure 7.30 SCTP Selective Acknowledgements can acknowledge blocks of data beyond the 
acknowledged Cumulative Transmission Sequence Number. 
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Figure 7.31 The SCTP Selective Acknowledgement chunk. 

acknowledgement or which is lucky enough to receive its data in perfect order 
sets the gap block count to zero and does not supply any start or end offsets. 

Also included in the Selective Acknowledgement chunk is a series of duplicate 
TSNs. Each time a receiver gets a duplicate TSN it lists it in the next Selective 
Acknowledgement chunk so that the sender knows that its data is being echoed 
or it is retransmitting too fast. There are a few points to note: 

�9 Only the TSN indicated in the Data chunk is included. It is not the intention 
that every duplicate byte be listed. 

�9 If a TSN is received multiple times, it should appear in the list multiple times. 
Only the first receipt is not included. 

�9 Each time a Selective Acknowledgement chunk is sent the counts are reset, 
and only new duplicates are reported on the next Selective Acknowledgement 
chunk. 

�9 If no duplicates have been received, the Number of duplicate TSNs is set to 
zero and no duplicates are included in the chunk. 

7.4.4 SCTP Implementation 
RFC 2960 does not simply define SCTP as a protocol. It also gives many details 
on how the protocol should, and in some cases must, be implemented. These 
details cover the use of timers, retransmission algorithms, flow control and con- 
gestion windows, and so forth. The RFC even includes state machines to ensure 
that there is no mistake in the behavior of an implementation. Lacking the 
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weight of reference material and sample implementations that TCP has, new 
SCTP implementations should pay close attention to the text in the RFC. 

Although the IETF does not normally specify interfaces, it has published 
a Working Group draft that documents extensions to the sockets API to make 
the full features of SCTP available to applications in a standardized way. This 
draft is making its way toward being an RFC, and it describes a mapping of 
SCTP into a sockets API to provide compatibility for existing TCP applications, 
access to the new features of SCTP, and a consolidated error and event notification 
scheme. Implementations of SCTP should aim to provide the sockets interface 
to make themselves fully useable by existing TCP-based applications. 

7.4.5 Choosing Between TCP and SCTP 
As yet, SCTP is not a commonly used transport protocol. Perhaps the greatest 
gating factor to its adoption is simply its lack of availability--TCP is built into 
most common operating systems as standard, but SCTP is relatively rare. Add 
to this a natural conservatism among protocol engineers, who would rather 
stick with the established and proven technology of TCP, whatever its issues, 
than go out on a limb with a new implementation of a new protocol. 

For an existing application to move to using SCTP, both end points must 
contain an implementation of SCTP and the applications at each end must be 
migrated to use the new protocol. Given the size of the installed base of applica- 
tions, this is unlikely to progress quickly. There is no easy way for an applica- 
tion to know whether a remote application with which it wants to communicate 
supports SCTP, so unless it is specifically configured it will fall back on TCP. 
The first deployments of SCTP in support of existing applications are likely to 
be in private networks where it is easier to manage which applications use 
which transport protocol. It is certainly true that the recent work to enhance the 
sockets API to allow applications to make use of the features of SCTP will make 
the process easier. 

Nevertheless, SCTP has some distinct advantages and is growing in popular- 
ity. New control and application protocols that are developed are free to choose 
between TCP and SCTP without the weight of history. Since the new protocols 
require new development and installation, it is less painful for them to also 
require a new transport protocol, so if the new applications require or can make 
sensible use of the additional features offered by SCTP they are free to choose it. 

7.4.6 Protocols That Use SCTP 
IANA lists very few protocols as having registered ports specifically for use with 
SCTP. However, there is nothing to prevent an application or control protocol 
that has a registered port number for TCP being successfully run over SCTP. 
This is increasingly what is happening with some implementations of PSTN 
protocols such as SIP and MTP2. 
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7.5 The Real-Time Transport Protocol (RTP) 
The Real-Time Transport Protocol (RTP) is a transport protocol in the sense that 
it provides transport services for its applications for the delivery of end-to-end 
data across the Internet. On the other hand, as a protocol it is remarkably light- 
weight, comprising just a single message (the data message) and being so short 
of features of its own that it must actually run over another transport protocol 
to achieve the level of function normally expected by an application. RTP 
should be considered as a top-up transport protocol. 

RTP is usually used on top of UDP, although it could actually be run over 
any other transport protocol from any protocol suite. Since RTP is intended to 
help manage data delivery for real-time applications (such as video and voice), 
it is desirable to keep the protocol overheads to a minimum, and UDP is best 
placed to do that. Of course, RTP could have been designed as a full transport 
protocol with the features of UDP and capable of standing on its own. There 
were two reasons not to do this. First, UDP already existed and was readily 
available--why reinvent or reimplement the same function? Second, to have 
made RTP a stand-alone and not a top-up protocol would have limited the 
options for its deployment over other transport protocols and would have lost 
the ability to build services suitable to different applications. 

RTP is accompanied by a management protocol called the Real-Time Transport 
Control Protocol (RTCP). It should be emphasized that RTCP is not a signaling 
protocol--it is not used to set up or manage connections, and it is not used to 
directly control the way data is exchanged by RTP. However, RTCP does allow 
end points to exchange information about the behavior of data flows between 
them, and this can be very useful to real-time applications that must act to 
ensure that the traffic meets the demanding quality of service requirements of 
voice and video applications. The information exchanged by RTCP may, there- 
fore, be used by RTP applications to change how they present data to RTP and 
how it is sent over the network. 

Since RTP runs over other transport protocols it does not have a registered 
IP protocol identifier, but it does have registered server port numbers (5004 for 
RTP and 5005 for RTCP). Although RTP and RTCP are really client-server proto- 
cols, these registered port numbers give all nodes ports on which to passively 
listen for traffic. Source port numbers are taken from the dynamic ports range 
and must be allocated with RTP using an even port number and RTCP using a 
port number one greater in value. 

The International Telecommunications Union (ITU) standard H.323 mandates 
the use of RTP, and it is used in products such as Microsoft's NetMeeting. 

7.5.1 Managing Data 
The primary purpose of RTP is to monitor, and, hence, maintain, the quality of 
data traffic for real-time applications. The requirements vary somewhat according 
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Figure 7.32 The RTP header is at least 12-bytes long. 

to application but are not limited simply to timely delivery of in-order, uncorrupted 
data. It is also important to manage the rate of delivery of data to avoid jitter, 
the distortions of media streams caused by data arriving in bursts with gaps in 
between. 

For this reason, the most important field in the RTP header shown in 
Figure 7.32 is the timestamp field. The timestamp is a 32-bit integer and contains 
the timestamp of the generation of the first byte of payload data. The stamp 
itself is in local format and does not need to be understood by the remote end 
point. It must, however, be monotonically increasing (that is, the timestamp on 
one packet is always the same as or greater than that on the previous packet-- 
within the scope of wrapping the 32-bit integer) and must provide sufficient 
granularity for the application to determine and resolve jitter issues. For 
example, audio applications would probably implement a clock that incremented 
by one for each audio sampling period. 

The other fields in the header are as follows. A 2-bit field indicates the 
version number of the protocol. Currently, version two is in use. This is fol- 
lowed by a single bit that indicates whether the packet concludes with 1 or 
more bytes of padding that are included in the packet length but do not form 
part of the packet data. If this is the case, the last byte of the packet is a count 
of the number of bytes of padding (that is, preceding and including the count) 
that should be ignored. It may be necessary to pad an RTP packet up to a par- 
ticular block size if multiple packets are concatenated in a single lower-layer 
protocol packet, or if the data must be presented in well-known units to an 
encryption algorithm. 

The next bit is the X-flag and indicates whether the header contains any 
private extensions (see below). The Contributing Source Identifier Count (CC) 
is a count of the number of Contributing Source Identifiers appended to the 
header and is important in defining the length of the header. 
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The use of the M-flag is dependent on the value of the Payload Type that 
follows it. It is most commonly used to help manage the data by providing 
synchronization events such as end of frame markers. This can allow the receiving 
application to reset itself without needing to parse the payload. 

The Payload Type defines the use to which the data is put, and so controls 
how the RTP header is used and what RTCP messages should be sent. The 
current list of registered Payload Types is shown in Table 7.6. Since the M-flag 
and the Payload Type field of RTP overlap with the Message Type field of 
RTCP, the Payload Type is chosen from a distinct set to make processing 
simpler. RTCP message types run from 200 to 204, so RTP message types 
72 through 76 are reserved. Most of the older payloads are discussed in 
RFC 1890. 

The Sequence Number is simply a 16-bit packet count that increments for 
each packet sent and wraps back to zero. This is used to help detect packet loss. 
The first number used should be chosen at random to help protect against 
clashes with previous uses of the same ports. 

The Synchronization Source Identifier (SSRC) is a random 32-bit identi- 
fier that identifies the source of the data within an RTP session. Since multi- 
ple nodes may participate in an RTP session (two-way traffic, multicast 
distribution, and so forth) it is necessary that the SSRC be unique across the 
session to guarantee identification of individual sources. Random generation 
of SSRCs is almost, but not quite, sufficient to make this guarantee, and there 
remains a slight possibility of two nodes picking the same values. SSRC con- 
tention is resolved by both sources dropping out of the session and picking 
new random SSRC values. This process also helps detect data that is sent in 
a loop. 

Contributing Source Identifiers (CSRCs) identify multiple data sources that 
have been combined to form a single stream. This may be useful when separate 
applications generate data for the same RTP session (for example, audio and 
video) and the multiple streams are merged into a single stream. In such cases, 
the SSRC identifies the mixer, that is the application that merges the streams, 
and the CSRCs identify the individual source applications. 

It is also possible for mixers to merge data streams from disjoint nodes. For 
example, in an audio conference, the mixer acts as a clearing house for all 
source voice streams, merges them, and sends them out to all of the listeners. 
The SSRC identifies the mixer and the CSRC identifies the speaker. 

RTP headers may be extended to carry information specific to the payload. 
The presence of a header extension is indicated by setting the X-flag to 1. The 
format of the extension is dependent on the payload type, but the extension is 
itself identified by a type (to allow multiple different extensions for a given pay- 
load type). An Extension Length field indicates the length of the extension in 
32-bit words, not including the identifier or length fields. This is illustrated 
in Figure 7.33. 
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Table 7.6 Registered RTP Payload Types 

Payload Type Name Clock Rate (Hz) Usage 
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5 
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12 
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Audio 

Audio 
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Audio 
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Audio 

Audio 

Audio 
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Table 7.6 Continued 

Payload Type Name Clock Rate (Hz) Usage 

Dynamic VDVI variable Audio 

Dynamic BT656 90000 Video 

Dynamic H263-1998 90000 Video 

Dynamic MPIS 90000 Video 

Dynamic MP2P 90000 Video 

Dynamic BMPEG 90000 Video 
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(2) P 1 (zero) M Payload Type Sequence Number 

Timestamp 

Synchronization Source Identifier 

Extension Identifier Extension Length 

Extension Data 

Figure 7.33 An RTP header with no Contributing Source Identifiers, but with a header extension. 

7.5.2 Control Considerations 
The Real-Time Control Protocol (RTCP) has three purposes. 

�9 It allows participants in an RTP session to register their presence and to leave 
the session gracefully. 

�9 It is used to monitor RTP data traffic and to feed back information about the 
quality of service being delivered. 

�9 It can carry application-specific information. 

There are five RTCP packet types, which are described in the following 
paragraphs. 

The Sender Descriptor (SDES) packet is sent by an application when it joins 
an RTP session. The SDES gives the SSRC of the application and supplies add- 
itional information such as the host name or the geographical address of the 
node in Source Description Items. Figure 7.34 shows how the SDES packet is 
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Figure 7.34 The RTCP Source Description packet has a smaller common header and at least one 
Source Description chunk built up from a sequence of source description items. 

built of a common RTCP header followed by a series of Source Description 
Chunks. The header includes a version number (two is the current version), the 
P-flag to indicate whether the packet is terminated with padding, a count of the 
number of Source Description Chunks present, a packet type field, and a packet 
length, which includes the header fields and is represented as a count of 32-bit 
words in the packet, m i n u s  one .  This peculiarity in the length field is intended 
to protect against scanning buffers built up of concatenated RTP packets where 
there is some corruption and the length field contains zero-- in  practice, it 
means that the length field counts the number of 32-bit words that follow the 
length field. 

The Source Description Chunk describes an individual source. It begins 
with the SSRC of the participant in the session and contains one or more Source 
Description items. Each Source Description Item has an item type, an item 
length and item data. Table 7.7 lists the defined item types and gives their 
purpose. The length of each chunk is given in bytes and does not include the item 
type or item length fields. Individual items are not padded to reach any special 
byte boundaries, and text strings are not null terminated. However, each chunk 
begins on a 4-byte boundary, so there may be null padding at the end of 
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Table 7.7 The RTCP Source Description Items 

Item Contents 

End of list marker. Length should be zero and data is ignored 

Persistent transport name (canonical name) of the form "user@host" or "host" where host is 
either the fully qualified domain name of the host or is the IP address of the host on one of its 
interfaces presented in dotted notation 

User name 

User's email address 

User's phone number 

User's geographical location (address) 

Application name 

Free-form notes about the source 

Additional private data. As shown in Figure 7.34, this is comprised of prefix and private data 

a chunk. Since the Source Description Chunk does not include a length field or 
a count of the number of items in the chunk, the chunk is ended with a special 
item of type zero with a length field of zero. 

A mixer, that is a node that merges RTP streams from multiple sources, 
sends an SDES packet for itself and includes Sender Descriptor Chunks for each 
of its contributing participants. If there are more than 31 chunks (governed by the 
size of the Source Count field) the mixer simply sends multiple SDES packets. 
Similarly, if a new participant joins the session through the mixer, the mixer 
just sends another SDES. 

When an application leaves the session, it sends a BYE packet if it is well 
behaved. This lets other participants know that it has gone and allows them to 
free up resources associated with the participant. Similarly, if an application 
notices a clash in SSRC values between its own SSRC and that of another partici- 
pant, it sends a BYE packet and immediately selects a new SSRC value and 
sends a new SDES. 

The BYE packet, shown in Figure 7.35, also begins with the standard RTCP 
header. Like the SDES, the BYE allows for multiple participants to be referenced 
in one packet; this is useful if a mixer leaves the session. Additionally, the BYE 
packet includes information encoded as a printable text string about why the 
participants have left. Only one reason is allowed for all participants identified 
on a single BYE packet. If no reason is included, the reason length is set to zero. 

Traffic monitoring is achieved using the Sender Report (SR) and Receiver 
Report (RR), shown in Figures 7.36 and 7.37. Periodically, every source of data 
on the RTP session sends a Sender Report to show the number of bytes and 
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Fioure 7.35 The RTCP BYE packet can report on multiple sources leaving the session. 
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Fioure 7.36 The RTCP Sender Report packet has a common header, a mandatory piece of sender information, and at least 
one report block. It may be followed by a profile-specific extension. 
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Figure 7.37 The RTCP Receiver Report packet has a common header and at least one report block. It may be followed by 
a profile-specific extension. It does not carry any sender information. 

packets it has sent. It includes an NTP timestamp to correlate the SR across the 
whole network, and also shows the RTP time at which the packet was gener- 
ated (using the same clock that is used to generate the timestamps on the RTP 
packets). 

Each SR also includes a Report block for each participant (again allowing for 
multiple participants on a single SR if the sending node is a mixer). The Report 
Block quantifies the quality of data received by the sender--which makes sense 
in the case of bidirectional traffic. 

When it receives an SR, a participant responds with a Receiver Report. The 
RR is similar to an SR in that it contains an SSRC to identify the receiver and 
a Report Block to describe the received data. The Sender Information is, however, 
omitted. 

Both SRs and RRs may include extensions with interpretation left up to the 
applications. 

A final RTCP packet is defined to allow applications to use RTCP to transfer 
their own control information. The Application packet shown in Figure 7.38 
begins with a standard RTCP header and the SSRC of the sender. This is followed 
by a 4-byte field that identifies the packet usage in printable text, and application 
data that is interpreted according to the application. 
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Figure 7.38 RTCP defines the Application packet for private use by an application. 

7.5.3 Choosing a Transport for RTP 
As mentioned before, RTP is a supplementary transport protocol that needs to 
run over some other transport protocol to provide the correct level of integrity 
and delivery. Any transport protocol would do, but in the context of the Internet 
the choice is between UDP, TCP, and SCTP. 

RTP traffic does not require 100 percent reliability. In fact, it is acceptable 
to lose the odd voice sample and it is only when losses get reasonably high that 
the listener will notice the degradation. Furthermore, a protocol that attempts 
100 percent packet delivery will back off while doing retires--this would be 
wholly unacceptable to a real-time application. Other back-off mechanisms for 
flow control and pacing are also ill-suited to real-time applications. 

All this makes TCP and SCTP pretty poor choices to underlie RTP. Add to 
these issues the signaling overhead of TCP and SCTP and the additional cost of 
maintaining connections and there is really no choice but to use the lighter- 
weight choice of UDP. 

If any further evidence was needed, it should be recalled that RTP is capa- 
ble of being used by multicast applications. TCP would require a full mesh 
of end-to-end connections, but UDP is capable of working with IP multicast 
(see Chapter 3) to address these needs. 

7.5.4 Choosing to Use RTP 
RTP offers real-time applications ways of monitoring quality of service so that 
they can take action to deliver the level of function their users need. 

There are, however, some issues with RTP and RTCP. The principle con- 
cern with RTP is the amount of control information that is transmitted in each 
data packet. This is illustrated in Figure 7.39, which shows the best case where 
a total of 40 bytes of overhead are sent before each piece of data. If the data is 
made up of audio samples, which are typically 16 bytes each, this means that 
more than 70 percent of the bandwidth is being used for control information. 
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Figure 7.39 RTP over UDP and IP imposes at least a 40-byte overhead in IPv4 

But the worst case is far worse. The IP header might have a few extra bytes 
for IP options, and the RTP header might include one or more CSRCs. Then 
security might be adding to the header size, and the IP addresses might use 
IPv6. Further, there may be considerable overhead from the lower-layer network 
protocols such as ATM or Ethernet--in fact, the overhead can be so large that 
several ATM cells are needed to send the header information before any data is 
actually sent. All this can add up to very poor use of the network bandwidth 
and, since the whole point of RTP is to enhance the quality of traffic for real-time 
applications, it is reasonable to wonder whether things might not be better if 
RTP was abandoned and some other method was used. 

The features of RTP (together with RTCP) are still sufficiently important 
that RTP is used extensively. Header compression techniques are used to 
reduce the amount of IP, UDP, and RTP information sent in each packet, thus 
improving the available bandwidth for data. See Chapter 15 for a discussion of 
header compression. 

RTP scales well as the number of participants in the session increases, but 
RTCP traffic increases exponentially as each participant exchanges control and 
monitoring information with all other participants. Obviously, this can affect 
the bandwidth available for data throughput. 

To get around this issue, the Sender Reports can be sent out less frequently 
and the responding Receiver Reports can be delayed a small amount. These delays 
can be randomized to avoid bunching of traffic, and can be factored according 
to the number of participants in the session. 

More sophisticated schemes can favor Sender Reports from active senders 
(that is, those that are currently sending RTP packets), giving them immediate 
Receiver Reports, and delay the Receiver Reports from silent participants. 
Similarly, silent participants can send Sender Reports less frequently. 

7.6 Further Reading 
There are numerous books that cover some or all of the common IP transport 
protocols at a variety of levels ranging from brief overview to thorough in-depth 
analysis of an individual implementation. 
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Intemetworking with TCP/IP, Vol. 1, by Douglas Comer (1996). Prentice-Hall. 
This is often considered the ultimate reference for TCP/IP. 

TCP/IP Illustrated, Vol. 1, by Richard Stevens (1994), and TCP/IP Illustrated, 
Vol. 2, by Gary Wright and Richard Stevens (1995). Addison-Wesley. 
These volumes give, respectively a, thorough explanation of TCP and 
how to implement it, and a detailed, line-by-line explanation of a sample 
implementation. 

TCP/IP Clearly Explained, by Peter Loshin (1999). Academic Press. This has useful 
chapters on TCP and UDP. 

The Design and Implementation of the 4.3 BSD UNIX Operating System, by Leffler, 
McKusick, Karels, and Quarterman (1989). Addison-Wesley. This gives a 
useful overview of UDP, TCP, and sockets within the context of an operating 
system implementation. 

Stream Control Transmission Protocol (SCTP): A Reference Guide, by Stewart, 
Xie, and Allman (2001). Addison-Wesley. The definitive guide to SCTP, 
written by two of the principal designers of the protocol. 

IP Telephony, by Bill Douskalis (2000). Prentice-Hall. This provides an overview 
of RTP and RTCP together with plenty of technical details about how the 
protocols can be used to carry voice traffic in the Internet. 

The IETF has published multiple RFCs covering the material in this chapter. 
They can be found through the IETF's web site at www.ietf.org. New work on 
IP transport protocols is split between two key Working Groups: the Transport 
Area Working Group (http://www.ietf.org/html.charters/tsvwg-charter.html) and 
the Signaling Transport Working Group (http://www.ietf.org/html.charters/ 
sigtran-charter.html). Some key RFCs are: 

UDP 

RFC 768--User Datagram Protocol 

TCP 

RFC 793--Transmission Control Protocol 
RFC 1122--Requirements for Internet Hosts 
RFC 1323--TCP Extensions for High Performance 
RFC 2018--TCP Selective Acknowledgement Options 
RFC 2414--Increasing TCP's Initial Window 
RFC 2525--Known TCP Implementation Problems 
RFC 2581--TCP Congestion Control 
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SCTP 

RFC 1950--ZLIB Compressed Data Format Specification version 3.3 (contains the 
definition of the Adler checksum algorithm) 

RFC 2960--Stream Control Transmission Protocol 
RFC 3257--SCTP Applicability Statement 

RTP 

RFC 1889--RTP: A Transport Protocol for Real-Time Applications 
RFC 1890--RTP Profile for Audio and Video Conferences with Minimal Control 


